Texas Instruments TI-58
Datasheet legend
Ab/c:
Fractions calculation
AC: Alternating current BaseN: Number base calculations Card: Magnetic card storage Cmem: Continuous memory Cond: Conditional execution Const: Scientific constants Cplx: Complex number arithmetic DC: Direct current Eqlib: Equation library Exp: Exponential/logarithmic functions Fin: Financial functions Grph: Graphing capability Hyp: Hyperbolic functions Ind: Indirect addressing Intg: Numerical integration Jump: Unconditional jump (GOTO) Lbl: Program labels LCD: Liquid Crystal Display LED: Light-Emitting Diode Li-ion: Lithium-ion rechargeable battery Lreg: Linear regression (2-variable statistics) mA: Milliamperes of current Mtrx: Matrix support NiCd: Nickel-Cadmium rechargeable battery NiMH: Nickel-metal-hydrite rechargeable battery Prnt: Printer RTC: Real-time clock Sdev: Standard deviation (1-variable statistics) Solv: Equation solver Subr: Subroutine call capability Symb: Symbolic computing Tape: Magnetic tape storage Trig: Trigonometric functions Units: Unit conversions VAC: Volts AC VDC: Volts DC |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Texas Instruments TI-58
The TI-58 calculator is the smaller cousin of Texas Instrument's legendary TI-59. The TI-58 had half the memory and no card reader, which meant that programs were lost when the calculator was powered down, thereby substantially reducing its utility. The TI-58C was a TI-58 with continuous memory (i.e., memory that retains its contents even when the calculator turned off.) Continuous memory greatly alleviated one of the design shortcomings of this model: in order to hook up the machine to the optional PC-100 printer/security cradle, it was necessary to turn it off, which meant losing the contents of program memory/data registers. This was no longer the case with the TI-58C as memory contents were preserved.
I now own several working TI-58Cs, one of them a result of some transplant surgery, as I combined a keyboard from one calculator (with dysfunctional memory, possibly a result of attempts to operate the calculator from a charger, but with no battery inside) with the rest of the innards from another. As I was doing this, I couldn't help but notice the relatively shoddy construction of these calculators compared to a 1977 TI-59.
While it is possible to use on this calculator the complex Gamma function program I wrote for the TI-59 (use 2 Op 17to set a suitable memory configuration), a smaller, real-only implementation is more appropriate for this calculator's more limited memory. Another advantage of this version is speed and the fact that this program doesn't require a solid state library module. (Of course, you can also use this program on the TI-59, where it fits onto one side of a magnetic card, making it not only faster but more convenient to use.)
To calculate the Gamma function of a real argument after this program has been keyed in, enter the argument and hit the Abutton.
000 76 LBL
001 11 A
002 32 x-t
003 01 1
004 42 STO
005 00 00
006 76 LBL
007 32 x-t
008 00 0
009 32 x-t
010 77 x>=t
011 61 GTO
012 49 PRD
013 00 00
014 85 +
015 01 1
016 95 =
017 32 x-t
018 61 GTO
019 32 x-t
020 76 LBL
021 61 GTO
022 42 STO
023 01 01
024 93 .
025 01 1
026 08 8
027 00 0
028 00 0
029 09 9
030 01 1
031 07 7
032 02 2
033 09 9
034 04 4
035 85 +
036 07 7
037 06 6
038 95 =
039 55 ÷
040 53 (
041 43 RCL
042 01 01
043 85 +
044 01 1
045 54 )
046 75 -
047 53 (
048 93 .
049 05 5
050 00 0
051 05 5
052 03 3
053 02 2
054 00 0
055 03 3
056 02 2
057 09 9
058 04 4
059 85 +
060 08 8
061 06 6
062 54 )
063 55 ÷
064 53 (
065 43 RCL
066 01 01
067 85 +
068 02 2
069 54 )
070 85 +
071 53 (
072 93 .
073 00 0
074 01 1
075 04 4
076 00 0
077 09 9
078 08 8
079 02 2
080 04 4
081 08 8
082 03 3
083 85 +
084 02 2
085 04 4
086 54 )
087 55 ÷
088 53 (
089 43 RCL
090 01 01
091 85 +
092 03 3
093 54 )
094 75 -
095 53 (
096 93 .
097 02 2
098 03 3
099 01 1
100 07 7
101 03 3
102 09 9
103 05 5
104 07 7
105 02 2
106 05 5
107 85 +
108 01 1
109 54 )
110 55 ÷
111 53 (
112 43 RCL
113 01 01
114 85 +
115 04 4
116 54 )
117 85 +
118 53 (
119 93 .
120 02 2
121 00 0
122 08 8
123 06 6
124 05 5
125 00 0
126 09 9
127 07 7
128 03 3
129 09 9
130 85 +
131 01 1
132 54 )
133 55 ÷
134 01 1
135 00 0
136 00 0
137 00 0
138 55 ÷
139 53 (
140 43 RCL
141 01 01
142 85 +
143 05 5
144 54 )
145 75 -
146 53 (
147 93 .
148 03 3
149 09 9
150 05 5
151 02 2
152 03 3
153 09 9
154 03 3
155 08 8
156 05 5
157 85 +
158 05 5
159 54 )
160 55 ÷
161 01 1
162 00 0
163 00 0
164 00 0
165 00 0
166 00 0
167 00 0
168 55 ÷
169 53 (
170 43 RCL
171 01 01
172 85 +
173 06 6
174 54 )
175 85 +
176 05 1
177 85 +
178 01 1
179 93 .
180 09 9
181 55 ÷
182 01 1
183 00 0
184 00 0
185 00 0
186 00 0
187 00 0
188 33 x2
189 95 =
190 65 ×
191 53 (
192 02 2
193 65 ×
194 89 π
195 54 )
196 34 √
197 55 ÷
198 43 RCL
199 01 01
200 95 =
201 23 lnx
202 85 +
203 53 (
204 43 RCL
205 01 01
206 85 +
207 05 5
208 93 .
209 05 5
210 54 )
211 23 lnx
212 65 ×
213 53 (
214 43 RCL
215 01 01
216 85 +
217 93 .
218 05 5
219 54 )
220 75 -
221 43 RCL
222 01 01
223 75 -
224 05 5
225 93 .
226 05 5
227 95 =
228 22 INV
229 23 lnx
230 55 ÷
231 43 RCL
232 00 00
233 95 =
234 92 RTN