Hewlett-Packard HP-17BII
Datasheet legend
Ab/c:
Fractions calculation
AC: Alternating current BaseN: Number base calculations Card: Magnetic card storage Cmem: Continuous memory Cond: Conditional execution Const: Scientific constants Cplx: Complex number arithmetic DC: Direct current Eqlib: Equation library Exp: Exponential/logarithmic functions Fin: Financial functions Grph: Graphing capability Hyp: Hyperbolic functions Ind: Indirect addressing Intg: Numerical integration Jump: Unconditional jump (GOTO) Lbl: Program labels LCD: Liquid Crystal Display LED: Light-Emitting Diode Li-ion: Lithium-ion rechargeable battery Lreg: Linear regression (2-variable statistics) mA: Milliamperes of current Mtrx: Matrix support NiCd: Nickel-Cadmium rechargeable battery NiMH: Nickel-metal-hydrite rechargeable battery Prnt: Printer RTC: Real-time clock Sdev: Standard deviation (1-variable statistics) Solv: Equation solver Subr: Subroutine call capability Symb: Symbolic computing Tape: Magnetic tape storage Trig: Trigonometric functions Units: Unit conversions VAC: Volts AC VDC: Volts DC |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Hewlett-Packard HP-17BII
The HP-17BII is the current successor of the HP-17B, a business calculator made by Hewlett-Packard. Its features are identical to those of the HP-17B, with one significant exception: the HP-17BII reintroduced "RPN" mode as an optional operating mode for this calculator.
Like the HP-17B, the HP-17BII also offers limited programmability in the form of its "SOLVE" feature. With the help of the IF and Σ functions, even simple loops and conditional constructs can be implemented. Here again is my version of the Gamma functionin a form that evaluates correctly for both positive and negative arguments:
G=(-1)^Σ(I:X:0:1:1)×EXP(LN(2.50662827511×(X+Σ(I:X:0:1:1))^6+ 83.8676043424×(X+Σ(I:X:0:1:1))^5+1168.92649479×(X+Σ(I:X:0:1:1))^4+ 8687.24529705×(X+Σ(I:X:0:1:1))^3+36308.2951477×(X+Σ(I:X:0:1:1))^2+ 80916.6278952×(X+Σ(I:X:0:1:1))+75122.633153)- Σ(I:0:6:1:LN(X+Σ(J:X:0:1:1)+I))+(X+Σ(I:X:0:1:1)+.5)× LN(X+Σ(I:X:0:1:1)+5.5)-X-Σ(I:X:0:1:1)-5.5-Σ(I:X:0:1:LN(-I)))