Casio fx-5200P

Datasheet legend
Ab/c: Fractions calculation
AC: Alternating current
BaseN: Number base calculations
Card: Magnetic card storage
Cmem: Continuous memory
Cond: Conditional execution
Const: Scientific constants
Cplx: Complex number arithmetic
DC: Direct current
Eqlib: Equation library
Exp: Exponential/logarithmic functions
Fin: Financial functions
Grph: Graphing capability
Hyp: Hyperbolic functions
Ind: Indirect addressing
Intg: Numerical integration
Jump: Unconditional jump (GOTO)
Lbl: Program labels
LCD: Liquid Crystal Display
LED: Light-Emitting Diode
Li-ion: Lithium-ion rechargeable battery
Lreg: Linear regression (2-variable statistics)
mA: Milliamperes of current
Mtrx: Matrix support
NiCd: Nickel-Cadmium rechargeable battery
NiMH: Nickel-metal-hydrite rechargeable battery
Prnt: Printer
RTC: Real-time clock
Sdev: Standard deviation (1-variable statistics)
Solv: Equation solver
Subr: Subroutine call capability
Symb: Symbolic computing
Tape: Magnetic tape storage
Trig: Trigonometric functions
Units: Unit conversions
VAC: Volts AC
VDC: Volts DC
Years of production: 1985  Display type: Alphanumeric display  
New price:   Display color: Black  
    Display technology: Liquid crystal display 
Size: 5½"×7"×½" Display size: 12 characters
Weight: 5 oz    
    Entry method: BASIC expressions 
Batteries: 2×"CR-2032" Lithium Advanced functions: Trig Exp Hyp Lreg Cmem Const 
External power:   Memory functions:  
I/O:      
    Programming model: BASIC 
Precision: 12 digits Program functions: Jump Cond Subr Lbl Ind  
Memories: 26 numbers Program display: Text display  
Program memory: 512 bytes Program editing: Text editor  
Chipset:   Forensic result: 9.00000716758  

fx5200p.jpg (47194 bytes)This curious Casio machine has the appearance of a traditional calculator, but offers a BASIC programming model like those found in Casio's pocket computers.

So here's yet again this somewhat boring example, a Gamma function program:

10 INPUT X
20 X=X+5
30 S=X* LNX-X+ LN(2*π/X)/2+1/12/X-1/360/X^3+1/1260/X^3/X^2
40 PRINT EXP(S- LN((X-1)*(X-2)*(X-3)*(X-4)*(X-5)))