Radio Shack EC-4026

Datasheet legend
Ab/c: Fractions calculation
AC: Alternating current
BaseN: Number base calculations
Card: Magnetic card storage
Cmem: Continuous memory
Cond: Conditional execution
Const: Scientific constants
Cplx: Complex number arithmetic
DC: Direct current
Eqlib: Equation library
Exp: Exponential/logarithmic functions
Fin: Financial functions
Grph: Graphing capability
Hyp: Hyperbolic functions
Ind: Indirect addressing
Intg: Numerical integration
Jump: Unconditional jump (GOTO)
Lbl: Program labels
LCD: Liquid Crystal Display
LED: Light-Emitting Diode
Li-ion: Lithium-ion rechargeable battery
Lreg: Linear regression (2-variable statistics)
mA: Milliamperes of current
Mtrx: Matrix support
NiCd: Nickel-Cadmium rechargeable battery
NiMH: Nickel-metal-hydrite rechargeable battery
Prnt: Printer
RTC: Real-time clock
Sdev: Standard deviation (1-variable statistics)
Solv: Equation solver
Subr: Subroutine call capability
Symb: Symbolic computing
Tape: Magnetic tape storage
Trig: Trigonometric functions
Units: Unit conversions
VAC: Volts AC
VDC: Volts DC
Years of production:   Display type: Numeric display  
New price:   Display color: Black  
    Display technology: Liquid crystal display 
Size: 6"×3"×½" Display size: 10+2 digits
Weight: 4 oz    
    Entry method: Algebraic with precedence 
Batteries: 1×"CR-2025" Lithium + 1×"CR-2016" Lithium Advanced functions: Trig Exp Hyp Lreg Cmem BaseN 
External power:   Memory functions: +/- 
    Programming model: Formula programming 
Precision: 12 digits Program functions: Jump Cond Subr Lbl  
Memories: 163(26) numbers Program display: Formula display  
Program memory: 1103 program steps Program editing: Formula entry  
Chipset: Casio fx-4500P   Forensic result: 9.00001568547  

ec4026.jpg (24178 bytes)Radio Shack's OEM version of the Casio fx-4500P, the EC-4026 is a decent multifunction scientific calculator with a comprehensive programming model.

This programming model is well demonstrated by the following program I wrote for the fx-4500P, calculating the logarithm of the Gamma function to a high degree of precision::

F1 L1	X=Ans
F1 L2	Z=Abs X
F1 L3	G=2.506628275+6.3E-10+(225.5255846+1.9E-8)/Z-
F1 L4	G=ln (G+1.146848954E-2+5.4E-12)/(Z+4))+(Z-.5)ln (Z+4.65)-Z-4.65
F1 L5	X>0⇒Goto 1.
F1 L6	G=ln (-π/Z/sin πZ)-G
F1 L7	Lbl 1
F1 L8	G